This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Spectrothermal properties and crystal structure of a polynuclear μ -

 squarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right)$ bis(monoethanolamine) copper(II) complex, $[\mathrm{Cu}(\mu-$ sq)(mea) $\left.]_{2}\right]_{<i>n</ i>}$Okan Zafer Yeşilel ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, 26480
Eskisehir, Turkey

To cite this Article Yeşilel, Okan Zafer(2006) 'Spectrothermal properties and crystal structure of a polynuclear μ squarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right) \mathrm{bis}\left(\right.$ monoethanolamine) copper(II) complex, $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{\mathrm{b} \mathrm{b} \times \mathrm{i} \mathrm{i} n</ i>}$, Journal of Coordination Chemistry, 59: 15, 1675-1684
To link to this Article: DOI: 10.1080/00958970600580084
URL: http://dx.doi.org/10.1080/00958970600580084

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Spectrothermal properties and crystal structure of a polynuclear μ-squarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right)$ bis(monoethanolamine)copper(II) complex, $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$

OKAN ZAFER YEŞILEL*
Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey

(Received 29 June 2005; revised 11 November 2005; in final form 15 November 2005)

Abstract

Catena-poly-trans- μ-(squarato- ${ }^{1}, \mathrm{O}^{3}$ bis(monoethanolamine)copper(II), $\quad\left[\mathrm{Cu}\left(\mu-\mathrm{C}_{4} \mathrm{O}_{4}\right)\right.$ $\left.\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]_{n}$ has been prepared and characterized by elemental analysis, IR, UV-Vis, EPR, thermal analysis and single crystal X-ray diffraction. The compound crystallizes in the triclinic system, space group $P-1$, with $a=5.1435(7), b=7.2931(10), c=7.5198(11) \mathrm{A}, \alpha=105.940(11)^{\circ}$, $\beta=98.731(11)^{\circ}, \gamma=101.981(11)^{\circ}$ and $Z=1$. The structure contains chains of squarato- $\mathrm{O}^{1}, \mathrm{O}^{3}-$ bridged polynuclear copper(II) units. The configuration around each copper is distorted octahedral with two nitrogen and two oxygen atoms of two bidentate neutral monoethanolamine (N, O) ligands and two oxygen atoms of two squarato $\left(\mu-\mathrm{O}^{1}, \mathrm{O}^{3}\right)$ ligands. These chains are held together by an extensive three-dimensional network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type intermolecular hydrogen bonds and van der Waals forces. The IR, UV-Vis and EPR spectra, magnetic study and thermal analysis of the complex are described.

Keywords: Copper(II) complex; Squaric acid; Monoethanolamine; X-ray analysis; Thermal analysis; EPR studies

1. Introduction

Squaric acid, $\mathrm{H}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$ (3,4-dihydroxycyclobut-3-ene-1,2-dione, H_{2} sq, scheme 1(a)), synthesized for the first time by Cohen et al. in 1959 [1], has been of much interest because of its cyclic structure and possible aromaticity. It belongs to the series of cyclic oxocarbons of formula $\mathrm{H}_{2} \mathrm{C}_{n} \mathrm{O}_{n}$ ($n=3-6$ for deltic, squaric, croconic and rhodizonic acids, respectively); coordination chemistry of the squarate ligand has been investigated in some detail [2-21]. The squarate anion $\left(\mathrm{C}_{4} \mathrm{O}_{4}^{2-}, \mathrm{sq}\right)$ does not behave like a chelating ligand but rather as a bridge between two or more metal atoms. In all the cases described, squaric acid is coordinated to a different metal atom and either mono-dimensional chain or bi-dimensional or tri-dimensional polymers are obtained. Diaqua and tetraaqua complexes of sq with transition metals were reported [2-9]. Synthesis and structural

[^0]
(a)

(b)

Scheme 1. Squaric acid (a), monoethanolamine (b).
characterization of mixed-ligand transition metal complexes of sq with mono- and bidentate N -donor ligands such as pyridine [10], imidazole [11], 2,2'-bipyridine [11-15] and 1,10-phenanthroline [13-16] appear in recent literature. In some transition metal complexes, the squaric acid acts as a counter ion [17-22]. However, most of them have monomeric or dimeric structures and very little has been reported to date about structures of mixed-ligand polynuclear squarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right)$-copper(II) complexes [3, 11, 23-25]. Solidstate thermal studies of several metal squarate and mixed ligand metal squarate complexes have been reported, indicating high thermal stability of the squarate moiety [26-30]. In the present paper, we describe the synthesis, spectroscopic, thermal studies and crystal structure of a polynuclear mixed-ligand copper(II) complex of sq with monoethanolamine (mea, scheme $1(\mathrm{~b}))$, trans $-\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$.

2. Experimental

2.1. Materials and measurements

All chemicals used were analytical reagents. Elemental analysis for C, H and N was carried out at the TÜBİTAK Marmara Research Centre. Magnetic susceptibility measurements at room temperature were performed using a Sherwood Scientific MXI model Gouy magnetic balance. Reflectance spectra were obtained using a GBC Cintra 20 UV-Vis spectrometer in the range $900-200 \mathrm{~nm}$. The IR spectrum was recorded in the $4000-200 \mathrm{~cm}^{-1}$ region with a Mattson 1000 FT-IR spectrometer using KBr pellets. TG8110 thermal analyzer was used to record simultaneous TG, DTG and DTA curves in static air at a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ in the temperature range $20-1000^{\circ} \mathrm{C}$ using platinum crucibles. Highly sintered $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ was used as a reference and the DTG sensitivity was $0.05 \mathrm{mgs}^{-1}$.

2.2. Preparation of the $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$

A solution of monoethanolamine $(0.25 \mathrm{~g}, 4 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was added dropwise upon stirring to a solution of $\mathrm{CuSq} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ [9] ($0.42 \mathrm{~g}, 2 \mathrm{mmol}$) in distilled water $(20 \mathrm{~mL})$. The solution was heated to $60^{\circ} \mathrm{C}$ in a temperature-controlled bath and stirred for 6 h at $60^{\circ} \mathrm{C}$. The reaction mixture was then slowly cooled to room temperature. The green crystals formed were filtered and washed with 10 mL of cold distilled water and methanol and dried in air. $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$: Yield ca. 78.5%; dp $203^{\circ} \mathrm{C}$. Anal. Calcd for $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right](\%)$: C, 32.3; H, 4.7; N, 9.4. Found: C, 31.7; H, 4.9; N, 9.1.

Table 1. Crystallographic data for $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$.

Compounds	$\left[\mathrm{Cu}(\mu \text {-sq)(mea) })_{2}\right]_{n}$
Empirical formula	$\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Cu}$
M_{r}	297.75
T (K)	296 (2)
Radiation, λ (A)	Mo K $\alpha_{\alpha}, 0.71073$
Crystal system	Triclinic
Space group	$P-1$
Unit cell dimensions	
a (${ }_{\text {® }}$)	5.1435(7)
b (A)	7.2931(10)
$c(\mathrm{~A})$	7.5198(11)
$\alpha\left({ }^{\circ}\right)$	105.94(1)
$\beta\left({ }^{\circ}\right)$	98.73(1)
$\gamma\left({ }^{\circ}\right.$)	101.98(1)
$V\left(\mathrm{~A}^{3}\right)$	258.71(6)
Z	1
$D_{c}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.911
$\mu\left(\mathrm{mm}^{-1}\right)$	2.132
$F(000)$	153
Crystal size (mm)	$0.080 \times 0.257 \times 0.560$
θ range (${ }^{\circ}$)	3.45-26.00
Index range (h, k, l)	-6/6, -8/8, -9/9
Reflections collected	3500
Independent reflections ($R_{\text {int }}$)	1010 (0.149)
Completeness to 2θ	998
Reflections with $I>2 \sigma(I)$	984
Absorption correction	Integration (STOE X-RED (stoe\&cie, 2002))
$T_{\text {min }}, T_{\text {max }}$	0.5269; 0.8950
Refinement method	Full-matrix least-squares on F^{2}
Data/restraints/parameters	1010/1/83
Goodness-of-fit on F^{2}	1.085
Final R indices [$I>2 \sigma(I)$]	$0.0486 w R_{2}=0.1323$
R indices (all data)	$0.0497 w R_{2}=0.1330$
Max. and min. shift/esd	0.000/0.000
Largest dill, peak and hole (e \AA^{-3})	0.792 and -0.584

2.3. Crystallographic analysis

Data collection was performed on a STOE IPDS II image plate detector using Mo K_{α} radiation $(\lambda=0.71073 \AA)$. Intensity data were collected in the θ range $3.45-26.00^{\circ}$ at 296 K . Details of data collection and crystal structure determinations are given in table 1. Data collection: Stoe X-AREA [31]. Cell refinement: Stoe X-AREA [31]. Data reduction: Stoe X-RED [31]. The structure was solved by direct-methods using SIR97 [32] and anisotropic displacement parameters of the non-hydrogen atoms were determined in a full-matrix least-squares refinement based on F^{2} using SHELXL-97 [33]. Molecular drawings were obtained using ORTEP-III [34].

3. Results and discussion

3.1. IR spectra

The most important IR absorption bands of $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$ are listed in table 2. The infrared spectrum showed a broad and intense band located around $3200 \mathrm{~cm}^{-1}$ due to

Table 2. Selected IR spectral data ${ }^{a}$.

	$\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$	Squaric acid $^{\mathrm{b}}$
$\nu \mathrm{O}-\mathrm{H}$	3502 m	3462 s
$\nu \mathrm{~N}-\mathrm{H}$	$3305 \mathrm{w}, 3252 \mathrm{~m}$	-
$\nu \mathrm{C}-\mathrm{H}$	$2970 \mathrm{vw}, 1937 \mathrm{w}, 2828 \mathrm{w}$	-
$\nu \mathrm{C}=\mathrm{O}$	1786 w	1822 w
$\nu \mathrm{C}=\mathrm{C}$	1598 w	1643 m
$\nu[(\mathrm{C}-\mathrm{O})+(\mathrm{C}-\mathrm{C})]$	$1524,1486 \mathrm{vs}$	$1530,1516 \mathrm{vs}$
$\nu \mathrm{Cu}-\mathrm{O}_{\text {mea }}$	429 w	-
$\nu \mathrm{Cu}-\mathrm{O}_{\text {sq }}$	477 w	-
$\nu \mathrm{Cu}-\mathrm{N}$	615 w	-

${ }^{\mathrm{a}} \mathrm{w}=\mathrm{weak} ; \mathrm{vw}=$ very weak; $\mathrm{s}=$ strong; $\mathrm{vs}=$ very strong; $\mathrm{m}=$ medium.
${ }^{\mathrm{b}}$ Reference [35].
the hydrogen bond $\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right)$ stretching vibrations. The band at $3502 \mathrm{~cm}^{-1}$ may be assigned to the hydroxyl group of the mea ligand, while the $\nu \mathrm{NH}_{2}$ stretching vibration appears as two split bands at 3305 and $3552 \mathrm{~cm}^{-1}$. The weak peaks in the $2970-2828 \mathrm{~cm}^{-1}$ range are due to $\nu \mathrm{CH}$ stretching. A very strong absorption centered at 1524 and $1486 \mathrm{~cm}^{-1}$ is assigned to a combination of squarato $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ stretching vibrations, respectively. This absorption is characteristic of salts of $\mathrm{C}_{n} \mathrm{O}_{n}^{2-}$ ions and is at $1500 \mathrm{~cm}^{-1}$ in the IR spectrum of $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$ [9]. This band is slightly split, suggesting, when compared to $\mathrm{K}_{2} \mathrm{C}_{4} \mathrm{O}_{4}$, that the symmetry is lower than $\mathrm{D}_{4 \mathrm{~h}}$, confirmed by X-ray investigation. Additional weak bands are observed at 1786 and $1598 \mathrm{~cm}^{-1}$ which are evidence for the presence of localized squarate $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bonds. These stretching vibrations are found at 1822 and $1643 \mathrm{~cm}^{-1}$ in the IR spectrum of free squaric acid [35]. The $\nu \mathrm{Cu}-\mathrm{O}_{\text {mea }}, \nu \mathrm{Cu}-\mathrm{O}_{\text {sq }}$ and $\nu \mathrm{Cu}-\mathrm{N}$ vibrations are observed as weak bands at 429, 477 and $615 \mathrm{~cm}^{-1}$, respectively.

3.2. Diffuse reflectance, EPR and magnetic susceptibility

The diffuse reflectance spectrum of the $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$ complex exhibits a distinct absorption band at 680 nm . This value was assigned to ${ }^{2} \mathrm{E}_{\mathrm{g}} \rightarrow{ }^{2} \mathrm{~T}_{2 \mathrm{~g}} \mathrm{~d}-\mathrm{d}$ transitions. The title complex exhibits an experimental magnetic moment value of 1.70 BM corresponding to one unpaired electron.

The powder EPR spectrum of the complex at room temperature is given in figure 1. The three lines in the spectrum show that the environment of the Cu^{2+} is close to orthorhombic geometry. The principal g values are $g_{x}=2.11, g_{y}=2.05$ and $g_{z}=2.29$. The Cu^{2+} hyperfine splitting is too small to be measured, indicating that the unpaired electron is distributed over the ligands.

3.3. Thermal analysis

Thermal decomposition of $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$ proceeds in two stages (figure 2). The first mass loss stage was observed in the range of $203-382^{\circ} \mathrm{C}$. Although the decomposition process is initially exothermic, an endothermic contribution is also observed in the DTA curve (DTA: 217 and $220^{\circ} \mathrm{C}$). This stage is related to the decomposition of the complex: two moles mea ligands release (exp. 41.85,

Figure 1. X-band EPR spectra of $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$.

Figure 2. TG, DTG and DTA curves of $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$.

Calcd 41.03%). A similar decomposition behavior has been reported for $\left[\mathrm{Cu}(\mathrm{sac})_{2}\right.$ $\left.(\text { mea })_{2}\right]$ and $\left[\mathrm{Cu}(\mathrm{ox})(\mathrm{mea})_{2}\right]$, where sac and ox are the saccharinate and oxalate anions, respectively [36, 37]. The second stage is related to the decomposition of the squarato ligand (exp. 31.30, Calcd 32.26%) and burning of the organic residue, in the temperature range of $383-493^{\circ} \mathrm{C}\left(\mathrm{DTG}_{\max }: 447^{\circ} \mathrm{C}\right)$. The total loss of mass, 73.15% agrees well with the calculated value of 73.29%. The final product of decomposition was identified by IR spectroscopy to be CuO .

Figure 3. Molecular structure of $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}$.

Table 3. Selected bond lengths and hydrogen bonding geometry for $\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]_{n}{ }^{\mathrm{a}}$.

Bond lengths (A) and angles (${ }^{\circ}$)				
$\mathrm{Cu}(1)-\mathrm{N}(1)$	1.983 (3)	$\mathrm{C}(3)-\mathrm{O}(2)$	1.251(5)	
$\mathrm{Cu}(1)-\mathrm{O}(1)$	2.373 (3)	$\mathrm{C}(4)-\mathrm{O}(3)$	1.244 (5)	
$\mathrm{Cu}(1)-\mathrm{O}(2)$	2.036 (3)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.467 (5)	
		$\mathrm{C}(3)-\mathrm{C}(4)^{\mathrm{i}}$	1.468 (5)	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)^{\mathrm{i}}$	180.00(0)	$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(1)^{\text {i }}$	97.97(11)	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)$	81.15(12)	$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{N}(1)^{\text {i }}$	90.84(13)	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)^{\mathrm{i}}$	98.85(12)	$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Cu}(1)-\mathrm{O}(2)^{\text {i }}$	82.03(11)	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)$	89.16(13)	$\mathrm{O}(1)^{\mathrm{i}}-\mathrm{Cu}(1)-\mathrm{N}(1)^{\mathrm{i}}$	81.15(12)	
$\mathrm{N}(1)-\mathrm{Cu}(1)-\mathrm{O}(2){ }^{\text {i }}$	90.84(13)	$\mathrm{O}(2)^{\mathrm{i}}-\mathrm{Cu}(1)-\mathrm{N}(1)^{\mathrm{i}}$	89.16(13)	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(1)^{\mathrm{i}}$	180.00(13)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(3)^{\mathrm{i}}$	89.5(3)	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)$	82.03(11)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(4)^{\mathrm{i}}$	90.5(3)	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(2)^{\text {i }}$	97.97(11)	$\mathrm{O}(3)-\mathrm{C}(4)-\mathrm{C}(3)$	133.9(4)	
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1){ }^{\text {i }}$	98.85(12)	$\mathrm{O}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	132.4(3)	
$\mathrm{O}(2)-\mathrm{Cu}(1)-\mathrm{O}(2)^{\text {i }}$	180.00(14)			
Hydrogen bonds				
D-H-A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	d($\mathrm{H}-\mathrm{A}$)	rf(D-A)	\angle (DHA)
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(3)^{\text {iii }}$	0.81(2)	1.85(2)	2.659(4)	175(5)
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{c}) \cdots \mathrm{O}(1)^{\mathrm{ii}}$	0.90	2.63	3.348 (4)	138
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{c}) \cdots \mathrm{O}(2){ }^{\text {ii }}$	0.90	2.19	2.988(4)	147
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~d}) \cdots \mathrm{O}(3)^{\text {ii }}$	0.90	2.27	0.051(4)	146

Symmetry operations ${ }^{\text {(i) }} 1-x, 1-y, 1-z$; ${ }^{\text {(ii) }} x-1, y, z$; ${ }^{\text {(iii) }} x-1, y-1, z$.

3.4. Crystal structure of $\left[\mathrm{Cu}(\mu-s q)(\text { mea })_{2}\right]_{n}$

A fragment of the structure of catena-poly-trans- μ-(squarato- $\mathrm{O}^{1}, \mathrm{O}^{3}$) bis(monoethanolamine)copper(II) is shown in figure 3, with selected bond lengths and bond angles together with the hydrogen bonds listed in table 3 . The structure of the complex is described as a distorted octahedron. Each copper atom is transconnected to two molecules of mea $(\mathrm{Cu}(1)-\mathrm{O}(1)=2.373(3) \AA, \mathrm{Cu}(1)-\mathrm{N}(1)=1.982(4) \AA$ A and two molecules of sq $(\mathrm{Cu}(1)-\mathrm{O}(2)=2.036(3) \AA)$ ligands. The squarate anion acts as
a O^{1} - O^{3}-bridging ligand so that one-dimensional zig-zag chains of transsquarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right)$ bridged copper(II) ions are built. The zig-zag chain runs parallel to the b axis. The mea acts as a bidentate amine N - and hydroxyl O-donor ligand and occupies the trans positions of the coordination octahedron forming a five-membered chelate ring. The $\mathrm{Cu}-\mathrm{O}_{\mathrm{sq}}$ bond length is $2.036(3) \AA$ in the $\mathrm{Cu}(\mathrm{II})$ complex, comparable with those reported for $\left.\left[\mathrm{Cu}_{2} \text { (bipy }\right)_{4} \mathrm{sq}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ [15]. It is slightly longer than those found in $\left\{\left[\mathrm{Cusq}(\text { ina })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (ina $=$ isonicotinamide) [23], but somewhat shorter than that in $[\mathrm{Cusq}(\text { prazine })]_{n}[25]$ and $\left\{\left[\mathrm{Cusq}(\text { imidazole })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ [11]. The $\mathrm{Cu}-\mathrm{O}_{\text {mea }}$ and $\mathrm{Cu}-\mathrm{N}$ bond distances of 2.373(3) and $1.983(3) \AA$, respectively, are typical for copper(II)-mea complexes [37-42]. The five-membered $\mathrm{Cu} 1, \mathrm{O} 1, \mathrm{C} 1, \mathrm{C} 2$ and N1 chelate ring is nearly planar. The intra chain $\mathrm{Cu}-\mathrm{Cu}$ distances of $8.004 \AA$ is significantly longer than in related $\mathrm{Cu}(\mathrm{II})$ complexes: $7.425 \AA$ in $\left\{\left[\mathrm{Cu}\left(\mathrm{sq}-\mathrm{O}^{1}, \mathrm{O}^{3}\right)\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ina})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{\mathrm{n}}[23], 7.851 \AA$ in $\left[\mathrm{Cu}\left(\mathrm{sq}-\mathrm{O}^{1}, \mathrm{O}^{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{im})_{2}\right]_{n}[11]$ and $7.981 \AA$ in $\left[\mathrm{Cu}_{2}\left(\mathrm{sq}-\mathrm{O}^{1}, \mathrm{O}^{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \text { (apox) }\right]_{n} \cdot n \mathrm{H}_{2} \mathrm{O}$ [43]. The intermolecular $\mathrm{Cu}(1)-\mathrm{Cu}(1)^{\mathrm{I}}=5.143$, (i: $x, y, 1+z$) and $\mathrm{Cu}(1)-\mathrm{Cu}(1)^{\text {ii }}=7.293 \AA$ (ii: $\left.\left.1+x, y, z\right)\right]$ distances are shorter than intramolecular distances.

The squarato ligand is almost planar, and the $\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 3$ torsion angle is $0.6(8)^{\circ}$. The $\mathrm{C}(3)-\mathrm{O}(2)$ bond length $[1.251(5) \AA]$ is somewhat longer than the $\mathrm{C}(4)-\mathrm{O}(3)$ distance $[1.244(5) \AA]$ as expected from $\mathrm{O}(2) \cdots \mathrm{Cu}$ coordination. There is no difference between the $\mathrm{C}-\mathrm{C}$ bond lengths [1.467(5) and $1.468(5) \AA$ for $\mathrm{C}(3)-\mathrm{C}(4)$ and $\mathrm{C}(3)-\mathrm{C}(4)^{\mathrm{i}}$ respectively] which are close to the values found in other squarato complexes [3, 4, 11-15, 43-45], although smaller than those reported for $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{HC}_{4} \mathrm{O}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{M}=\mathrm{Co}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II}))$ [47]. The $\mathrm{O}-\mathrm{C}-\mathrm{C}$ angles vary between 132.36 and 137.12° and the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles are equal to $89.5(3)$ and $90.5(3)^{\circ}$, respectively. Comparison of values of the $\mathrm{Cu}-\mathrm{O}_{\mathrm{sq}}$, $\mathrm{Cu}-\mathrm{O}_{\text {mea }}, \mathrm{Cu}-\mathrm{N}$ with average $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ distances, and of the $\mathrm{O}_{\text {mea }}-\mathrm{Cu}-\mathrm{N}_{\text {mea }}$ angle for similar squarate and monoethanolamine metal complexes can be found in table 4.

The $\mathrm{Cu}-\mathrm{O}_{\text {mea }}$ bond distance $\left(2.373(3) \AA\right.$) is significantly longer than the $\mathrm{Cu}-\mathrm{O}_{\mathrm{sq}}$ and $\mathrm{Cu}-\mathrm{N}$ bonds (2.036(3) and $1.982(3) \AA$, respectively), and this result in the formation of elongated distorted octahedral geometry along the $\mathrm{Cu}-\mathrm{O}_{\text {mea }}$ bonds as a consequence of the Jahn-Teller effect. Thus, N and O_{sq} atoms form the equatorial plane of the coordination octahedron, while the hydroxyl O atoms occupy the axial positions.

These chains are linked by moderate hydrogen bonds between the non-coordinating oxygen atoms of the squarate anions to both oxygen and nitrogen atoms of the monoethanolamine ligand and between the coordinated oxygen atoms of the squarate anions and nitrogen atoms of the ethanolamine ligand. The packing of the molecules is due to van der Waals forces and to hydrogen bonds between $\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(3)^{\mathrm{iii}}$, $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{c}) \cdots \mathrm{O} 2^{\mathrm{ii}}, \mathrm{N}(1)-\mathrm{H}(1 \mathrm{c}) \cdots \mathrm{O}(1)^{\mathrm{ii}}$ and $\mathrm{N}(1)-\mathrm{H}(1 \mathrm{~d}) \cdots \mathrm{O}(3)^{\mathrm{ii}}$ (see table 3). Figure 4 shows the crystal packing of the compound.

4. Conclusions

Catena-poly-trans- μ-(squarato- $\mathrm{O}^{1}, \mathrm{O}^{3}$)bis(monoethanolamine)copper(II) crystallizes in the triclinic system with space group $P-1$. The squarate anion acts as a $\mathrm{O}^{1}-\mathrm{O}^{3}$-bridging ligand so that one-dimensional zig-zag chains of trans-squarato $\left(\mathrm{O}^{1}, \mathrm{O}^{3}\right)$ bridged copper(II) ions are built. The mea acts as a bidentate amine N - and hydroxyl O-donor ligand and occupies trans positions of the coordination octahedron forming
Table 4. Comparison of the bond distances and angles of the squarato and monoethanolamine metal complexes ${ }^{\text {a }}$.

Complex	Squarato mode complex type	$\mathrm{Cu} \cdots \mathrm{Cu}(\AA)$	$\mathrm{Cu}-\mathrm{O}_{\text {sq }}(\AA)$	$\mathrm{C}-\mathrm{O}_{\mathrm{sq}}$ and $\mathrm{C}-\mathrm{C}_{\mathrm{sq}}(\mathrm{A})$	$\begin{aligned} & \mathrm{Cu}-\mathrm{O}_{\text {mea }} \text { and } \\ & \mathrm{Cu}-\mathrm{N}_{\text {mea }}(\AA) \end{aligned}$	$\mathrm{O}_{\text {mea }}-\mathrm{Cu}-\mathrm{N}_{\text {mea }}(\mathrm{A})$
$\left[\mathrm{Cu}(\mathrm{ox})(\mathrm{mea})_{2}\right]^{\mathrm{b}}$	-	-	-		2.433, 2.023	78.17
$\left[\mathrm{Cu}(\mathrm{sac})_{2}(\mathrm{mea})_{2}\right]^{\text {c }}$	-	-	-	-	2.326, 1.992	80.97
$\left[\mathrm{Cu}(\mu-\mathrm{sq})(\mathrm{mea})_{2}\right]$ (This work)	$\mu-1,3 /$ chain	8.004	2.036	1.248, 1.468	$2.373,1.983$	81.15
$\left[\mathrm{Cu}(\mathrm{sq})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{ina})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}^{\mathrm{d}}$	$\mu-1,3 /$ chain	7.425	1.992	-	-	-
$\left[\mathrm{Cu}(\mathrm{sq})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{im})_{2}\right]^{\text {e }}$	$\mu-1,3 /$ chain	7.851	2.475	1.240, 1.520	-	-
$\left[\mathrm{Cu}_{2}(\mathrm{sq})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { apox })\right]_{n} \cdot n \mathrm{H}_{2} \mathrm{O}^{\mathrm{f}}$	$\mu-1,3 /$ chain	7.981	1.952	1.251, 1.466	-	-
$\left[\mathrm{Cu}(\mathrm{sq})\left(\mathrm{H}_{2} \mathrm{O}\right)(\right.$ terpy $\left.)\right] \cdot \mathrm{H}_{2} \mathrm{O}^{\mathrm{g}}$	$\mu-1,2 /$ chain	7.770	1.946	1.257, 1.445	-	-
$\left[\mathrm{Cu}_{2}(\mathrm{sq})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\text { terpy })_{2}\right] \cdot\left(\mathrm{ClO}_{4}\right)_{2}{ }^{\text {h }}$	$\mu-1,3 /$ binucl	7.770	2.333	$1.255,1.461$	-	
$\left[\mathrm{Cu}_{2}(\mathrm{sq})(\text { bipy })_{4}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}^{\mathrm{i}}$	$\mu-1,3 /$ binucl	7.424	2.005	1.246, 1.464	-	-
$\left[\mathrm{Cu}_{2}(\mathrm{sq})(\text { phen })_{4}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{\mathrm{j}}$	$\mu-1,2 /$ binucl	4.912	1.995	1.280, 1.468	-	-
$\left[\mathrm{Cu}_{2}(\mathrm{sq})\left(\mathrm{SalNEt}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}^{\mathrm{k}}$	$\mu-1,2 /$ binucl	5.210	1.962	1.253, 1.460	-	-
${ }^{\mathrm{a}}$ ox $=$ oxalate,\quad sac $=$ saccharinato,\quad ina $=$ isonicotinamide,$\quad i m=$ imidazole,$\quad \mathrm{H}_{2}$ apox $=N, N^{\prime}$-bis $\left(3\right.$-aminopropyl)oxamide, \quad terpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine, bipy 1,10-phenanthroline, $\mathrm{SalEt}_{2}=\mathrm{N}$-(2-(diethylamino)ethyl)-salicylideneaminate. ${ }^{\mathrm{b}}$ Yılmaz et al., 2003 [37]; ${ }^{\mathrm{c}}$ Yılmaz et al., 2001 [38]; ${ }^{\text {d }}$ Ucar et al., 2005 [23]; ${ }^{\mathrm{e}}$ Bernardinelli et al., 1989 [11]; ${ }^{\mathrm{f}}$ Castro et al., 2001 [43]; ${ }^{\text {g.h }}$ Solans et al., 1990 [14]; ${ }^{\mathrm{k}}$ Xanthopoulos et al., 1993 [44].						

Figure 4. Packing diagram of $\left[\mathrm{Cu}\left(\mu \text {-sq) }(\text { mea })_{2}\right]_{n}\right.$.
a five-membered chelate ring. The d-d transition spectrum and magnetic susceptibility of the title complex are compatible with octahedral configuration. The Cu^{2+} hyperfine splitting is too small to be measured, indicating that the unpaired electron is distributed over the ligands. The complex is stable up to $203^{\circ} \mathrm{C}$ and decomposes in two stages.

Supplementary material

Crystallographic data for the structure reported here have been deposited at the CCDC as supplementary data, CCDC No. 276484. Copies of the data can be obtained on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (E-mail: deposit@ccdc.cam.ac.uk).

Acknowledgment

The author is grateful to Prof. Dr. Orhan Büyükgüngör for X-ray data collection and to Assistant Recep Biyik for obtaining the room temperature ESR spectra.

References

[1] S. Cohen, J.R. Lacher, J.D. Park. J. Am. Chem. Soc., 81, 3480 (1959).
[2] A. Weiss, E. Riegler, I. Alt, H. Böhme, C. Robl. Z. Naturforsch, 41b, 18 (1986).
[3] B.D. Alleyne, L.A. Hall, H.A. Hosein, H. Jaggernauth, A.J.P. White, D.J. Williams. J. Chem. Soc., Dalton Trans., 3845 (1998).
[4] G.M. Frankenbach, M.A. Beno, A.M. Kini, J.M. Williams, U. Welp, J.E. Thompson, M.H. Whangbo. Inorg. Chim. Acta, 192, 195 (1992).
[5] K. Michelsen, K.M. Nielsen, E. Pedersen. Acta Chem. Scandinavica, A42, 724 (1988).
[6] C. Robl, A. Weiss. Z. Naturforsch, 41b, 1341 (1986).
[7] A. Weiss, E. Riegler, C. Robl. Z. Naturforsch, 41b, 1329 (1986).
[8] A. Weiss, E. Riegler, C. Robl. Z. Naturforsch, 41b, 1333 (1986).
[9] R. West, H.Y. Niu. J. Chem. Soc., 85, 2589 (1963).
[10] R. Kirchmaier, E. Altin, A. Lentz. Z. Kristallogr. NCS, 218, 1 (2003).
[11] G. Bernardinelli, D. Deguenon, R. Soules, P. Castan. Canadian J. of Chem., 67, 1158 (1988).
[12] R. Soules, F. Dahan, J.P. Laurent, P. Castan. J. Chem. Soc., Dalton Trans., 587 (1988).
[13] J.T. Reinprecht, J.G. Miller, G.C. Vogel, M.S. Haddad, D.N. Hendrickson. Inorg. Chem., 19, 927 (1980).
[14] X. Solans, M. Aguilõ, A. Gleizes, J. Faus, M. Julve, M. Verdaguer. Inorg. Chem., 29, 775 (1990).
[15] I. Castro, M.L. Calatayud, J. Sletten, F. Lloret, M. Julve. Inorg. Chim. Acta, 287, 173 (1999).
[16] A. Bulut, I. Ucar, O.Z. Yesilel, H. Icbudak, H. Olmez, O. Büyükgüngör. Acta Cryst., C60, m526 (2004).
[17] I. Ucar, O.Z. Yesilel, A. Bulut, H. Olmez, O. Büyükgüngör. Acta Cryst., E61, m947 (2005).
[18] O.Z. Yesilel, A. Bulut, I. Ucar, H. Icbudak, H. Olmez, O. Büyükgüngör. Acta Cryst., E60, m228 (2004).
[19] I. Ucar, O.Z. Yesilel, A. Bulut, H. Icbudak, H. Olmez, C. Kazak. Acta Cryst., C60, m392 (2004).
[20] I. Ucar, O.Z. Yesilel, A. Bulut, H. Ölmez, O. Büyükgüngör. Acta Cryst., E60, m1025 (2004).
[21] I. Ucar, O.Z. Yesilel, A. Bulut, H. Icbudak, H. Olmez, C. Kazak. Acta Cryst., E60, m322 (2004).
[22] O.Z. Yesilel, A. Bulut, I. Ucar, H. Icbudak, H. Olmez, O. Büyükgüngör. Acta Cryst., E60, m228 (2004).
[23] I. Ucar, A. Bulut, O. Büyükgüngör. Acta Cryst., C61, m218 (2005).
[24] L.H. Huo, X.L. Cheng, H. Zhao, W. Ng. Acta Cryst., E61, m460 (2005).
[25] C. Näther, I. Jeß. Acta Cryst., C57, 260 (2001).
[26] R.A. Bailey, W.N. Mills, W.J. Tangredi. J. Inorg. Nucl. Chem., 33, 2387 (1971).
[27] A. Mondal, D. Das, N.R. Chaudhuri. J. Therm. Anal. Calorim., 55, 165 (1999).
[28] T.K. Maji, D. Das, N.R. Chaudhuri. J. Therm. Anal. Calorim., 63, 617 (2001).
[29] D. Das, A. Ghosh, N.R. Chaudhuri. Bull. Chem. Soc., Japan, 70, 789 (1997).
[30] T.K. Maji, D. Das, N.R. Chaudhuri. J. Therm. Anal. Calorim., 68, 319 (2002).
[31] Stoe\&Cie. X-area (version 1.18) and X-red32 (version 1.04). Stoe \& cie, Darmstadt, Germany, 2002.
[32] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A. Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna. J. Appl. Cryst., 32, 115 (1999).
[33] G.M. Sheldrick. Shelxl-97, University of Göttingen, Germany (1997).
[34] M.N. Burnett, C.K. Johnson, Ortep III. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA, 1996.
[35] F.G. Baglin, C.B. Rose. Spectrochim. Acta Part A, 26a, 2293 (1970).
[36] V.T. Yılmaz, Y. Topcu, F. Yılmaz, C. Thone. Polyhedron, 20, 3209 (2001).
[37] V.T. Yılmaz, E. Şenel, C. Thone. Polyhedron, 56, 1417 (2003).
[38] M.B. Hursthouse, K.J. Izod, M.A. Mazid, P. Thornton. Polyhedron, 9, 231 (1990).
[39] P. Bombicz, E. Madarasz, E. Fonzs, I. Foch. Polyhedron, 16, 3607 (1997).
[40] V.T. Yılmaz, O. Andaç, Y. Topcu, W.T.A. Harrison. Acta Cryst., C57, 271 (2001).
[41] J. Madarász, P. Bombicz, M. Czugler, G. Pokol. Polyhedron, 19, 457 (2000).
[42] M.B. Hursthouse, K.J. Izod, M.A. Mazid, P. Thornton. Polyhedron, 9, 535 (1990).
[43] I. Castro, M.L. Calatayud, J. Sletten, M. Julve, F. Lloret. C.R. Acad. Sci. Paris, Chimie/Chemistry, 4, 235 (2001).
[44] C.E. Xanthopoulos, M.P. Sigalas, G.A. Katsoulos, C.A. Tsipis, C.C. Hadjikostas, A. Terzis, M. Mentzafos. Inorg. Chem., 32, 3743 (1993).
[45] I. Castro, J. Faus, M. Julve, Y. Journaux, J. Sletten. J. Chem. Soc., Dalton Trans., 2533 (1991).
[46] A. Weiss, E. Riegler, I. Alt, H. Böhme, C. Robl. Z. Naturforsch., 41b, 18 (1986).
[47] I. Brach, J. Rozière, B. Anselment, K. Peters. Acta Cryst., C43, 458 (1987).

[^0]: *Email: yesilel@ogu.edu.tr

